Standards

The availability and adoption of industry standards play an important role in permitting the electricity industry to be nimble enough to meet these challenges. Industry standards provide efficiency improvements, drive down costs, and expedite transformations.

TOC - Electrical science, key role industrial standards


Goals for the design of electrical systems that include both linear and nonlinear loads are established in this recommended practice. The voltage and current waveforms that may exist throughout the system are described, and waveform distortion goals for the system designer are established. The interface between sources and loads is described as the point of common coupling and observance of the design goals will reduce interference between electrical equipment.This recommended practice addresses steady-state limitations. Transient conditions exceeding these limitations may be encountered.

Read more about the standard


IEEE 1547-2018 - Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces

The technical specifications for, and testing of, the interconnection and interoperability between utility electric power systems (EPSs) and distributed energy resources (DERs) are the focus of this standard. It provides requirements relevant to the performance, operation, testing, safety considerations, and maintenance of the interconnection. It also includes general requirements, response to abnormal conditions, power quality, islanding, and test specifications and requirements for design, production, installation evaluation, commissioning, and periodic tests. The stated requirements are universally needed for interconnection of DER, including synchronous machines, induction machines, or power inverters/converters and will be sufficient for most installations. The criteria and requirements are applicable to all DER technologies interconnected to EPSs at typical primary and/or secondary distribution voltages. Installation of DER on radial primary and secondary distribution systems is the main emphasis of this document, although installation of DERs on primary and secondary network distribution systems is considered. This standard is written considering that the DER is a 60 Hz source.

Read more about the standard


BDS EN 50160 - Voltage characteristics of electricity supplied by public distribution networks

BS EN 50160:2007 defines, describes and specifies the main characteristics of the voltage at a network user’s supply terminals in public low voltage and medium voltage electricity distribution networks under normal operating conditions.

Read more about the standard


BDS EN 50160 - Voltage characteristics of electricity supplied by public electricity networks

This European Standard defines, describes and specifies the main characteristics of the voltage at a network user”s supply terminals in public low voltage, medium and high voltage AC electricity networks under normal operating conditions. This standard describes the limits or values within which the voltage characteristics can be expected to remain at any supply terminal in public European electricity networks and does not describe the average situation usually experienced by an individual network user. NOTE 1 For the definitions of low, medium and high voltage see 3 (Definitions). This European Standard does not apply under abnormal operating conditions, including the following: a) a temporary supply arrangement to keep network users supplied during conditions arising as a result of a fault, maintenance and construction work, or to minimize the extent and duration of a loss of supply; b) in the case of non-compliance of a network user”s installation or equipment with the relevant standards or with the technical requirements for connection, established either by the public authorities or the network operator, including the limits for the emission of conducted disturbances; NOTE 2 A network user’s installation may include load and generation. c) in exceptional situations, in particular, 1) exceptional weather conditions and other natural disasters; 2) third party interference; 3) acts by public authorities; 4) industrial actions (subject to legal requirements); 5) force majeure; 6) power shortages resulting from external events. The voltage characteristics given in this standard are not intended to be used as electromagnetic compatibility (EMC) levels or user emission limits for conducted disturbances in public electricity networks. The voltage characteristics given in this standard are not intended to be used to specify requirements in equipment product standards and in installation standards. NOTE 3 The performance of equipment might be impaired if it is subjected to supply conditions which are not specified in the equipment product standard. This standard may be superseded in total or in part by the terms of a contract between the individual network user and the network operator. NOTE 4 The sharing of complaint management and problem mitigation costs between the involved parties is outside the scope of EN 50160. Measurement methods to be applied in this standard are described in EN 61000-4-30.

Read more about the standard


BS EN IEC 61000 - Electromagnetic compatibility (EMC)

BS EN IEC 61000 Electromagnetic compatibility (EMC).

This is a multi-part document divided into the following parts:

Read more about the standard